Exercise 2.4.5

This problem presents an alternative derivation of the heat equation for a thin wire. The equation for a circular wire of finite thickness is the two-dimensional heat equation (in polar coordinates). Show that this reduces to (2.4.25) if the temperature does not depend on r and if the wire is very thin.

Solution

The two-dimensional heat equation in polar coordinates is

$$
\frac{\partial u}{\partial t}=k\left(\frac{\partial^{2} u}{\partial r^{2}}+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}}\right) .
$$

If the temperature u does not depend on r, then the radial derivative vanishes.

$$
\frac{\partial u}{\partial t}=k\left(\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}}\right)
$$

For a very thin wire that is bent into a circle with radius $R, r=R$.

$$
\begin{aligned}
\frac{\partial u}{\partial t} & =k\left(\frac{1}{R^{2}} \frac{\partial^{2} u}{\partial \theta^{2}}\right) \\
& =k\left(\frac{\partial^{2} u}{\partial(R \theta)^{2}}\right)
\end{aligned}
$$

Letting $x=R \theta$ represent the arc length, we obtain equation (2.4.25) in the text.

$$
\begin{equation*}
\frac{\partial u}{\partial t}=k \frac{\partial^{2} u}{\partial x^{2}} \tag{2.4.25}
\end{equation*}
$$

